Programming the Grid: Distributed Software Components & Grid Web Services for Scientific Applications

Dennis Gannon
Department of Computer Science
And
Pervasive Technology Laboratories
Indiana University
And
NCSA Alliance

Outline

- Component Technologies
 - Concept
 - DOE CCA model
 - Grid implementation
- Web Services
 - Application Level Services
 - Components as Services
- Putting it together
 - challenges

1000s of PCs -> massive supercomputers

Some Examples

- To see what is required for a Grid programming, need to look at real examples.
 - Materials Science
 - Remote instrument control
 - Orbiting Space Junk

An Industrial Application

- Materials Science
 - NCSA Chemical Eng. Team
 - Semiconductor Processing
 - Copper metalization on Silicon
 - Optimizing Semicon Fab Processes

- Process Engineer at company X wants to try an experiment
 - to simulate proposed changes in chip fabracation by changing some of process parameters.
 - To accomplish this two different simulations needed to be coupled.

The Problem in Greater Depth

- It is a Grid coupled multi-scale simulation problem
 - The Monte Carlo simulation is at University Y and the Continuum simulation is at Company Z
- They decide to collaborate but
 - 1. The effort must protect security for each peer.
 - Codes may be used but not moved
 - Data must be protected.
 - 2. How does Engineer at X do this?

Engineer's Grid Script

- 1 Launch MC at Y
- 2. Launch Cont at Z
- 3. Link MC to Cont
- 4. Execute MC & Cont
- 5. Store results at X

Application 2: X-Ray Crystallography

Xports Project:

Network-Based Macro-Molecular Structure Determination

Remote Instrument Control And on-line data analysis

R. Bramley, D. F. McMullen,
J. Huffman
Indiana University
I. Foster, G. von Laszewski,
M. Westbrook
Argonne National Laboratory
E. Westbrook,
Lawrence Berkeley Laboratory

Application

Application 3: Tracking Space Junk

- Approximately 9,000 objects larger than 3 cm orbiting earth with speeds averaging about 10 Km/sec
- The Problem:
 - To launch something you need to know if you will hit the space junk.
 - Must predict thousands of orbit paths.
- (an homage to Entropia and Condor)

Computation Based on Peer to Peer Model

The Algorithm

- Divide objects into groups of size < 100
- Send each group to an idle machine to compute orbit trajectories
- Report potential collisions back to root component.
- Launch master and workers
- Load tasks into workers. Workers report results back to user as collision events.

Software Components &

- THE STATE OF THE S
- What is a Component Architecture?
 - A Software Engineering Methodology/Standard
 - to promote code reusability & reduce application complexity.
 - a precise set of protocol that define interoperability between and behavior of software "components" of an application.

A Component

 Is an encapsulated software module defined by its public interfaces.

A Component framework is -

 A compile-time/runtime environment for instantiating, composing and running components.

Examples of CAs:

- Desktop Software:
 - Simplify the design and interoperability of desktop apps
 - Microsoft COM, Java Beans, Gnome CORBA Components
- Distributed Software:
 - Make it possible to easily incorporate a remote object into a local computation
 - Enterprise Java Beans, DCOM/.Net, CORBA Component Model (CCM).

سي?What about CAs for the Grid

- Several good projects
 - Corba Based CAs: IRISA/INRIA, Gateway,
 Miss. State, Rutgers, NASA Glenn
 - Imperial College
- Look at US Dept. of Energy CCA.
 - Designed for both parallel and Dist. Apps.

The DOE Common Component Architecture

- A specification for a CA for large scale scientific computation
 - Both a DOE project and an open forum
 - Sandia, IlnI, argonne, pnnI, ornI, nasa (icase), utah, indiana, Maryland, ncsa, ... about 50 people.
- Key I dea: dynamic composition by linking "ports"
 - Provides ports: interface of "services" provided
 - Uses ports: a call-site/use of a service to be provided by another coponent.

Building Applications by Composition

Connect uses Ports to Provides Ports.

Image tool graphical interface component

CCA Application Example

Solving a Time Dependent PDE from an Unstructured FEM Mesh Lois McInnes, Lori Freitag, Boyana Norris, David Bernholdt, Jim Kohl Ben Allen and Rob Armstrong

Using components on the Grid

- How do you find out about existing application components?
- How to launch a remote component?
- How to discover remote instances?
- What protocol should be used for remote method invocations?
- Can components use "messages/events" to communicate?
- How to manage a large distributed set of remote components?
- How to handle authentication and authorization?
- How does one encapsulate legacy applications?

Component Communication

- How do components communicate?
 - Use a simple Remote Procedure Call Mechanism
 - We Use Simple Object Access Protocol SOAP
 - Uses XML over HTTP and XML Schemas.
 - Java RMI implemented over SOAP and C++ bindings
 - NET compatible. Oh, Boy! Also works well with WSDL.
 - Very robust but slooooow.
 - Events/Messages
 - Objects encoded as XML Docs.
 - Compatible with Soap

How to link and control a set of components?

- We use a Jython Script
 - Script uses java cog to launch the component instances through gram
 - Or script can consult a directory service
 - The script can call a connect operation to link two instances
 - The script can invoke ports directly

Events

- Event/Notification Services are an essential part of all distributed systems.
- Application Events
 - "I am done." "I just wrote to a file", "here is a result" "Oops! I just did an underflow"
- Event Publishers & Listeners
 - Some Listeners subscribe; others poll
 - Must have persistent event channels
 - grid web services that allow portals access to application history logs.

Security

The Problem

- When two components are linked how does the provider authenticate the user?
- When I wish others to use my component instance how do I handle authorization?
 - Must be done on a port-by-port basis.
 - Same problems as faced by web services

Solutions

- Using SSL with globus proxy certs.
- Components have a "control port" which can be used to load authorized user lists.
 - Legion/Akenti/GAA projects have some good lessons to teach us.

Something New: Web Services

- A Web Service is
 - A network service that provides a functional interface to remote clients.
 - designed to allow composition of services
- Big collaboration between big players
 - IBM, Microsoft, Oracle, HewlitPaq, ..., sun
 - Central to MS .NET and I BM services plans
- In effect, a web service is an instance of a CCA Grid component with only "provides ports".

Central Web Services Standards

- Web Services Description Language (WSDL)
 - An XML document that
 - Describes the interfaces types for each port
 - The contents of messages it receives and sends
 - Describes the bindings of interfaces to protocols
 - SOAP XML over HTTP is default, others possible
 - Describes the access points (host/port) for the protocol bindings
- Web Services Flow Langauge (WSFL)
 - An XML document that describes how a business process invokes a set of services
- UDDI & WSIL
 - A mechanism to discover WSDL docs for services
- WSIF -
 - Translates WSDL docs into Java proxies

WSFL & Control Flow

- An XML document that describes the work flow of a task that uses web services
 - Completely analogous to component script
 - Except no direct service to service link.

Web Services in Grid Programming

- Authentication and Authorization
 - Obvious examples of Grid Web Services
- Discovery Service
 - Finding remote "instances" of things
 - May be LDAP based like MDS or other ...
- Resource Brokering
 - What are the best resource upon which to run my application now?
- Application Factory Service

Application Factory Service

- A service that understands a how to instantiate a running instance of an app component.
 - You provide it with appropriate requirements initial conditions, etc.
 - The service
 - checks you credentials and authorization
 - launches the app and returns a reference to it.

Anatomy of a Componentized Grid Service

Application

- User Configures Application from Web Browser
 - Sets application parameters
 - Launches job
- Web Server contacts appropriate application factory service (FS)
 - Supplies FS with task parameters
 - FS contacts Resource Broker and secures job launches.
 - Returns job! D to server to browser
 - Job begins execution
 - Publishes its contact point to discovery service
 - •Begins publishing status events to event channel.
 - Web server discovers application
 - •Allows user to interrogate it or retrieve event traces

User Portals/ Science Portals Web Disc Server Event App factory Resource **Broker** Instance

An Application Instance

- Typical Instance
 - Publishes event stream to "well known" channel.
 - Has a Control
 Interface to allow portal level interrogation or remote steering
 - May be linked to other components/services

Encapsulating Legacy Apps

- Common Case
 - Legacy App that reads files and writes files.
 - Use a "scripted component" called an app manager.
 - Component runs a python script loaded at startup or through a control command
 - The App Script
 - Stages files
 - Launches and monitors application
 - Writes Output files
 - publishes event streams

Conclusions

- Component models can be an effective way to design grid applications
 - Easy integration with globus grids
 - An event/messaging model is critical
 - Not hard to encapsulate legacy applications
 - Components can be composed and managed by simple grid scripts
- Completely consistent with Web Services model for grid application.
 - CCA grid component IS a transient web service
 - Application factory services a useful tool for building distributed applications and managing portals.